:: 게시판
:: 이전 게시판
|
- 모두가 건전하게 즐길 수 있는 유머글을 올려주세요.
- 유게에서는 정치/종교 관련 등 논란성 글 및 개인 비방은 금지되어 있습니다.
통합규정 1.3 이용안내 인용"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
22/05/11 11:28
개인적으로는 저렇게 돌려가면서 평행이동 시켜도 달라질게 없다는걸 알지만, 그래도 혹시 내가 미쳐 생각 못한 부분을 놓쳐서 틀릴 수도 있으니 단순 계산을 꼼꼼하게 하는걸 더 선호해서 그냥 미분하고 적분하는 쪽을 택했던 것 같네요.
22/05/11 11:29
이 분 이런 영상들이 종종 유튜브 알고리즘에 걸려서 몇 개 봤는데, 본질에 맞닿은 접근도 있고, 다소 지엽적인(보편적으로 적용하기 어려운) 접근도 있었던 것 같습니다.
(본문 영상은 제가 지금 영상 볼 상황이 안되는데 나중에 한 번 보겠습니다.)
22/05/11 11:30
저런 방법이 좋다 나쁘다 보다는 저런 접근을 능숙하게 해내는 것이 중요하다고 봅니다.
아이들 가르치다보면 저런 내용을 알려주었을 때 능숙하게 소화해서 응용하는 아이가 있는 반면 이해조차 못하는 아이들도 있거든요.
22/05/11 11:41
본문 영상을 봤는데, 이건 제가 가르치는 입장이라고 생각하면 굳이 소개하지 않고 싶은 내용이네요.
- 중하위권 학생이라면 오히려 해가 될 것 같고 - 상위권 학생에게는 굳이 필요 없는 풀이법인 것 같습니다. - 최상위권 학생에게 흥미 용도로 '이런 접근도 있다' 정도 하면 '아 그렇겠네요' 하는 정도로 소개해봄직 한 정도...?
22/05/11 11:48
그게 막줄의 '최상위권 학생에게 소개해봄직하다'인데,
비정석적인 풀이 중에서도 생각의 범위를 넓혀주는 풀이가 있고, 기초가 탄탄하지 않으면 오히려 헷갈리게 만들 수 있는 풀이가 있다고 생각합니다. 본문 영상은 후자에 해당하는 것 같습니다. 다르게 얘기하면 '이걸 써먹어도 되는 경우와 써먹으면 안되는 경우를 구분할 줄 알 법한' 정도의 학생에게는 소개해봄직한 것 같습니다.
22/05/11 11:43
1. 직선을 가로로 눕혀서 가져와도 된다.
2. 그래프의 모양은 2차식이 결정하고 1차식은 평행이동에만 관여한다. 3. 그래프 넓이는 1차식은 1:1, 2차식은 2:1, 3차식은 3:1 .... 이렇게 3가지만 알면 진짜 중학생 수준에서 풀 수 있는 문제로 보이긴 하는데... 2번은 이해가 되고 3번은 오 그런가? 싶은데 1번이 잘 이해가 안되네요.
22/05/11 12:06
저게 말처럼 그냥 저 직선을 가로로 눕혀서 가져오는 게 아니라서 그렇습니다. 직선을 눕힌(?) 그림에서의 곡선은 [원래 곡선]에서 [(3,3)에서 접하는 직선을 뺀 곡선]의 모양(=적분 대상)을 추정한 것이거든요.
강사분은 1) 이차식의 모양은 이차항 계수가 변하지 않으면 똑같다 라는 조건과 2) 원래 그림에서 곡선과 직선이 (3, 3)에서 만나므로(y값이 같아짐) 두 선의 y값의 차는 x=3일 때 0이 된다 라는 조건 두 가지를 가져와서, 새로 그린 적분 대상 곡선(곡선과 직선의 y값의 차에 대한 그래프)은 계수가 1인 이차식인데 x=3일 때 y=0이 되는 이차식이라는 걸 알아냅니다. 이 적분대상 곡선의 y값은 최소가 0(원래 그림에서 곡선이 항상 직선보다 위에 있음)이므로, 곡선의 방정식은 결국 y축을 따르는 평행이동은 없는 식인 y = (x - 3)^2가 될 수밖에 없다라고 한 번에 풀어버린 것 같네요.
22/05/11 12:25
1번 과정이 위의 함수에서 밑에 함수를 뺀것을 표현하는 것 같습니다.
x^2 - 4x + 6 - (2x - 3) = x^2 - 6x + 9 = (x - 3)^2 일차항이 평행이동에만 관여하는 것과 접선이 가지는 특징을 직관적으로 알아채고 제곱의 형태로 바꾸는게 포인트네요. 눕힌다는 표현보다 저렇게 설명해주면 더 좋을 것 같은데.. 약간 아쉽네요!
22/05/11 13:26
1번 원리를 카발리에리의 원리라고 부릅니다. 쌓여있는 선이나 종이를 밀어서 다른 모양이 되더라도 넓이 (혹은 부피)는 같다 라는 거죠.
높이가 같고 밑변의 길이가 같은 삼각형은 모양이 다르게 생겼어도 넓이가 다 같다는 원리(등적변형)의 연장선입니다. https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=jiumnara&logNo=220740282385 등의 그림을 참조하시면 직관적으로 이해가 되실 겁니다.
22/05/11 14:31
풀이 아이디어는 좋고 실제로 적용하기도 괜찮을 듯한데, 두 분 다 1. 설명이 애매하네요. 2는 설명했고, 3은 적분(혹은 구분구적법)하면 나오는거니 설명이 되는데. 1번은 소주파님 말대로 풀이하는게 이치에 맞아요.
22/05/11 11:46
솔직히 수능은 '문제풀이'에 가깝다고 생각하는데 여기 유튜브에서 바라는 방식은 '수학을 완전히 이해하고 있어야한다' 네요.
물론 그 방법이 좋은 방향은 맞지만, 제대로 이해하는 길로 가는 것은 상당히 어렵다고 생각합니다. 이 방법으로 가려고 고3이 투자하는건 완전 틀렸고 적어도 중학교때부터 이런 머리를 키우기 위해서 공부해온 학생들에게는 좋을 것 같네요.
22/05/11 11:57
예전에 오랫동안 고민한 부분중에 하나였는데,
수학적 논리과정을 생략하고, 빈번한 기출유형을 저런식으로 풀이해도 되느냐... 개인적인 결론은 '된다.'였습니다. 근데 또 어떻게 생각이 바뀔지 모르겠네요. 크크
22/05/11 13:21
1 + 1 = 2 부터 다 증명할 거 아니면 어느정도의 논리 과정은 생략될 수 밖에 없죠.
교육과정이나 수학의 역사적 발달 과정이나, 2차함수의 면적이 1 : 2로 나눠진다는게 먼저 '발견' 되고 나서 적분을 배워나간다는 걸 생각해보면, 저 풀이가 오히려 더 본질에 가까운 거긴 합니다.
22/05/11 12:01
수학에 센스 좋은 친구들은 직관적으로 알고 있을 내용이네요.
다만 이 풀이에 의미는 [“저 면적이 의미하는게 뭔지 생각해봤니?”] 이어야지 [“이케 풀면 빨라요!”] 면 안된다고 생각합니다.
22/05/11 12:04
뜬금없이 로피탈의 정리 생각나네요.
사실 교육 과정 상으로나, 실제로나 증명을 기반으로 문제를 푸는게 맞긴한데... 문제는 학생들이 듣지를 않죠 크크크크.
22/05/11 12:20
사실 수능에서 로피탈의 정리로 풀만한 문제는 안 나오죠..
로피탈 쓰면 계산이 구질구질하고 길어져서 굳이 쓸 이유 없는 문제들만..
22/05/11 17:36
풀어보진 않았고 대충 훑어봤을땐 작년꺼는 없네요(!)
2021수능 나형에 3번(...) 17번은 써서 푸는게 편하고 빠르다 생각합니다. 분수꼴 극한은 로피탈 알고 모르고가 무기 하나가 더 있기도 하고, 속도에서는 무조건 이득이니 시간이 중요한 수능에는 써야한다 생각합니다
22/05/11 18:24
로리탈 배우기 전에 감으로 이렇게도 풀수있네 하면서 자주 이용해먹었던 기억이 나네요 그때 기억으로는 짧은시간이였지만 잘 써먹었어요
그러다 로피탈 배우고 아 이게 로피탈이였구나 했고요
22/05/11 12:35
완벽한 풀이법은 아니더라도 시간 제한이 있는 수능에서 중상정도 학생이 알면 좋은 풀이법 같네요 저도 고3전까지 거의 수포자였다가 과외선생님이 저런 방식으로 접근해서 빨리빨리 풀고 넘어가서 시간을 버는 방법을 알려줘서 수능때 꽤 이득을 봤던 경험이 있습니다
22/05/11 14:01
뭔가 했더니...
수학을 이해하면서 푸는 상위권들은 가르쳐주지 않아도 알고 있을겁니다. 근데 저게 이해가 안되면 따라하면 안되는 거라 결론적으로 쓸모가 없는 영상이라고 생각합니다.
22/05/11 14:05
이분 영상보면 가끔 고딩때 수학샘이 알려주던 방법들도 나오고..적용하기 쉬운것도 있고 애매한것도 있는데 괜찮다고 느끼는건 적용을 바로 한다기보다는 단순 공식이 아닌 이해라는 것에 초점이 맞춰져 있어서 성적보다 지적탐구등에서 꽤 만족스러운 영상도 있었어요
22/05/12 00:26
시험에 맞게 공부하는거죠.
내신은 통합니다. 수능은 안통합니다. 또는 수능은 그냥 푼거랑 별 차이없습니다. 고1고2에는 내신을 봐야되니깐 필요합니다. 수능을 준비하는 고3 재수생이면 저런것은 뒤도안돌아보고 개무시하면됩니다.
|